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ABSTRACT

The aim of this paper is to investigate the use of multiple-
window Short-Time Fourier Transform (STFT) represen-
tation for single sensor source separation. We propose to
iteratively split the observed signal into target sources and
residuals. Each target source is modeled as the sum of ele-
mentary components with known power spectral densities
(PSDs). The approach involves a non negative decomposi-
tion of the spectra of the observed mixure in a given frame
into a dictionary of PSDs. The resolution of the PSDs va-
ries at each iteration of the algorithm. The decomposition
into source signals and residual signals employs a confi-
dence measure, which is based on the Fisher information
matrix of the expansion coefficients. We demonstrate the
improved performance of the proposed method on mix-
tures of voice and music signals.

1. INTRODUCTION

Recently, we introduced a single sensor blind source se-
paration approach [1], which is based on an extension of
the Wiener filtering to nonstationary processes through the
use of Gaussian mixture models. The analysis is carried
out in the joint time-frequency domain with the Short-
Time Fourier Transform (STFT) of the signals. In this do-
main, we have defined the notion of an elementary source
Ssi(t, f) = \/ar(t)-Sbi(t, f), where S is the STFT ope-
rator, ay(t) is a non negative amplitude parameter and by,
is a zero-mean stationary Gaussian process with diagonal
covariance matrix X = {07 (f)};. The amplitude para-
meter can be seen as either a temporal envelope parameter
or an activation parameter. We define a composite source
as the sum of independent elementary sources over a set

of indices K : Ssi(t, f) = > pex, Vax(t) - Sbi(t, f).
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The resulting separation algorithm, in a Bayesian frame-
work, consists of two steps :

1. Computation of the amplitude parameters {ax(t)}
in a maximum likelihood sense, for all frame in-
dices t.

2. Filtering the original mixture according to the resul-
ting adaptive Wiener filters.

In this paper, we propose an improvement of this algo-
rithm by using a multiple-window STFT representation.
The basic idea is to decompose, in an iterative fashion, the
observed signal into source components and residual com-
ponents for several window lengths. The algorithm initia-
lizes with a relatively long window, which becomes shor-
ter throughout the iterations. The source components in
each iteration are defined as the components that are well
represented in the current resolution. The input signal for
iteration ¢ is the residual generated at the iteration ¢ — 1.
The paper is organized as follows. In Section 2, we brie-
fly recall the general framework of the mono-resolution
algorithm presented in [1]. In Section 3, we introduce the
new approach with a special emphasis on the choice of
a confidence measure. This measure is used for selecting
the subset K; that corresponds to the most reliable am-
plitude parameters. In Section 4, we present experimental
results obtained on mixtures of music and voice signals.
Conclusions and perspectives are given in Section 5.

2. OVERVIEW OF THE CLASSICAL
ALGORITHM

2.1. Notations

Let x denote the observed signal, which is assumed to be a
mixture of two unknown source signals, s, so. Let S de-
note the STFT operator and Sz (¢, f) the STFT of x(n),
where n is a discrete time index, ¢ and f are respecti-
vely the time-frame and frequency-bin indices. Then, in



the STFT domain we have
SiC(t, f) = Ssl(ta f) + 852(t7 f) .

Note that we restrict ourselves here to two sources al-
though the generalization to more than two sources is
theoretically straightforward and has been successfully
tested.

2.2. Learning the PSDs sets

We assume that we have some clean training samples of
each source. These training excerpts do not need to in-
clude the source signals contained in the observed mix-
ture, but we assume that they sufficiently diverse and cha-
racterize the type of expected source signals. For example
we may learn elementary drums PSDs on a range of drums
solos. From these training samples, we estimate the co-
variance matrices (or PSDs set) {07 (f)}rek, for each
source s;. We may use, for instance, a vector quantization
algorithm on the short-time Fourier spectra of the excerpts
in order to build the PSDs set.

2.3. Amplitude parameters estimation

Conditionally upon the amplitude parameters {ay(t)}x,
all the elementary sources Ssg (¢, f) are independent zero-
mean Gaussian processes with variance {ax(t)o?(f)}.

Then the observed mixture is also a zero-mean Gaussian
process with variance {>_, ax(t)oz(f)}. Therefore, we

have the following log-likelihood equation :
logp(&v(t Hlar(t)}) =
Sx(t, f
! Z [' +10a(E(f,1)]

where E(t, f) = Y ek, v, @k(t)or(f). We can esti-

mate the amplitude parameters {ax(t)}, by setting the
first derivative of the log-likelihood to zero under a non
negativity contraint. As this problem has no analytic solu-
tion, we use an iterative fixed-point algorithm with multi-
plicative updates [2, 3, 4], yielding

Sz(t,f)|?
Zfak( ) %
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where EO (¢, f) =3, a;(f) (t)or(f).

af () = al (1)

2.4. Source separation

Conditionally upon the estimated amplitude parameters
{ax(t)}x, sources separation can be obtained through a

generalized Wiener formula :

ZkeK ar(t )Ui(f)

D ke kUK, Tk (t)oi(f)

Ssi(t, f) = Sxz(t, f).

3. THE MULTIRESOLUTION APPROACH

3.1. General description of the algorithm

Let wy(n),...,wy(n) denote N windows with decrea-
sing support length, and let S,,,, denote the STFT operator
with an analysis window w;(n). We first basically apply
the algorithm of Section 2 with the longest window w1 (n).
This algorithm is slightly modified to yield a residual si-
gnal 7, , such that

Swlw(tvf) = Swlsl,wl (tvf) +Sw182,w1 (tvf)
+ Swlrwl (tﬂ f) :

After inverse STFT, we iterate on 7, (n) with analysis
window ws, and so on. At the iteration ¢ we have

Swirwifl(tvf) = Swisl,wi (tvf) +Swi827’wi (t7f)
+ Swirwl <t7 f) .

While no residual signal is computed with the monore-
solution approach, the multiresolution approach involves
the selection of a set of PSDs with their associated am-
plitude parameters. This is done through a partition of the
amplitude parameters indices £ € K1 U K into three dif-
ferent sets Q1(¢), Q2(t) and R(t). The set R(t) contains
the indices k such that the corresponding {ax(t)}rer(r)
are “unreliably” estimated and the set Q1 (t) (resp. Q2(t))
contains the indices k € K; (rep. k € K>) of reliably es-
timated ay,(¢). More precisely, this partition is carried out
through the computation of a confidence measure J(t).
This confidence measure should be high if the correspon-
ding estimate of ay(t) is reliable. As will be seen in Sec-
tion 3.2, the confidence measure that we have chosen is
related to the Fisher information matrix of the likelihood
of the amplitude parameters.

Note that these three sets of indices Q1 (), Q2(t) and R(t)
are frame dependent. Relying on similar filtering formulae
as those used in the classical algorithm, we obtain three
estimates §1 ., (1), 82w, (n) and 7,,,(n) (back in the time
domain). Then we can iterate on 7, (n) with a different
STFT window w;41(n).

Finally, we have the following estimates,

N
Z §11wi (t)
i=1



N

S = D S, (t)
i=1

7(t) = Tuy(t).

With this algorithm we expect that long signal compo-
nents will be reliably estimated with long analysis win-
dows, while short signal components, such as transients,
will remain in the residual signal until the window length
is sufficiently small to capture them reliably.

3.2. Choice of a confidence measure

Suppose we have a confidence interval on each amplitude
parameter ay(t) : ag(t) € [ar(t) — L (t); ar(t) + Li(2)].
Then the quantity Jj,(t) = ax(¢)/ [Lr(t) — £k (t)] can be
considered as a relative confidence measure for the es-
timate ay(t). If Ji(t) > X where X is an experimen-
tally tuned threshold, we assume that the estimate dy,(t)
at frame ¢ is reliable. Using a Taylor expansion of the log-
likelihood around the ML estimate, we have

log p(rw, [{ar(t) + dax(t) }x) ~

o p(ra, Hin (1) 1) — 5 8aa (0] H 1) Gan (1),

where H; ;(t) = {ax(t)}r). Ta-
king the expectation on both sides of the approximate
equality, we get

62
~ a9 @ 108 P(Tw,
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E (log Pl {an(t) + 3ax(0))) H“’““”)
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where the left side of the approximate equality is simply

the Kullback-Leibler divergence and I(¢) is the Fisher in-
formation matrix for ay(t) = ag(t). This relationship is
well known and is also true if {ay(¢)} is not a local opti-
mum [5]. For a given admissible error E on the Kullback-
Leibler divergence, we get

[6ar ()] < V2E - \/[T71 )]k

thus yielding a confidence interval on a(t) for a given
admissible error E' on the objective function.

Note that the sensitivity of the estimated parameters to
a small change in the objective function (here, the log-
likelihood) or a mis-specification of the objective func-
tion is related to the inverse of the Fisher information
matrix. In our model, the Fisher information matrix is

L j(t) = 5 Zf E({t)(;)(gf) Take the inverse of I(t), w

obtain

_ a(t)
MO =

3.3. Practical choice of the thresholds

As mentioned above, it is possible to tune the thresholds in
an experimental way. A way to circumvent this problem is
to sort the confidence measures Jj (¢) for each fixed frame
index t. Then we can keep the M more reliable estimates
for each frame, and use all the other k estimates to build
the residual. An alternative way to proceed is to build the
residual set R(t) by taking the less reliable indices such
that 3y gy an(t) < ezkeKl,wiUK2,wi ax(t), for a gi-
ven € € [0,1]. Indeed, the first sum is the estimated va-
riance of the residual r,,, while the second sum is the es-
timated variance of the overall decomposition r,,, , for
each frame. Then after IV iterations, the residual variance
is approximately lower than €V times the original signal
variance.

4. EXPERIMENTAL STUDY

4.1. Experimental protocol

The evaluation task consists of unmixing a voice plus jazz
music audio track. All the audio excerpts are sampled at
16 kHz. We make a 15 seconds long linear mix of a male
voice in French and an excerpt of a jazz piece with 0 dB
Signal to Noise Ratio (SNR). The voice excerpt has been
recorded under good environmental conditions. The voice
PSDs are trained on a set of about 50 short excerpts of
various male speakers. The jazz piece is an excerpt of
The Four Seasons by the Jacques Loussier Trio. The ex-
cerpt contains piano, bass and drums. We were given trai-
ning data for each instrument. Using a Vector Quantiza-
tion (VQ) algorithm, the training step had to be done for
each window size, namely 64, 16 and 8 ms. We obtain
respectively :

— 83, 113 and 180 PSDs for the piano,

— 56, 81 and 89 PSDs for the bass,

— 9, 30 and 59 PSDs for the drums,

— 289, 369 and 453 PSDs for the speech model.

4.2. Evaluation criteria

The criteria we use for the separation performance are des-
cribed in [6]. Basically, the SDR (Source to Distortion Ra-
tio) provides an overall separation performance criterion,



the SIR (Source to Interference Ratio) measures the level
of the interferences from other sources in each source es-
timate and the SAR (Signal to Artifacts Ratio) measures
the level of artifacts in the source estimates. The higher
are the ratios, the better is the quality of the estimation.

4.3. Evaluation

In this evaluation, we present the SDR, SIR and SAR re-
sults on three different configurations, for both instrumen-
tal and speech parts. The first configuration is the standard
pseudo-Wiener algorithm with a single STFT window of
length 16 ms. The second configuration uses the modi-
fied algorithm with two STFT windows of size 64 and
8 ms. Finally, the third configuration uses three windows
of length 64, 16 and 8 ms.!

TAaB. 1 — SDR, SIR and SAR for the different methods
using a 0 dB SNR mixture.

| source [ SDR [ SIR [ SAR |

1 STFT window
music 3.8 6.1 8.6
voice | -1.9 | 5.1 0.1

2 STFT windows
music 4.2 6.8 8.6
voice 23 | 101 | -1.7

3 STFT windows
music 4.2 7.4 7.7
voice | -2.3 9.7 -1.0

As can be seen in Table 1, the SDR is slightly improved
with the new method on the music part (around 0.4 dB)
but the improvement is not clear in the speech component
case. Moreover, the figures are very similar with two and
three windows. The small improvement in the SDR for the
music component when we use more than one STFT win-
dow is confirmed by the SIR and SAR scores. The case
of the speech is different. Indeed, we have an improve-
ment of 5 dB in SIR from one window to two windows.
This improved SIR is obtained at the cost of a lower SAR.
However, we have listened to the separated speech com-
ponents with the one and two STFT windows methods,
and we have noticed that the intelligibility of the speech
is improved with the new method, although the SAR de-
creases.

1 Audio available at http://persos.

mist-technologies.com/~lbenaroy/iwaenc/.

samples  are

4.4. Discussion

In order to understand the practical problem we had to
deal with, it should be noticed that in many cases, the lo-
cal energy of the mixture is spread over just a few ampli-
tude parameters (usually no more than 4 a(t) per frame,
among several hundreds of them). Therefore splitting the
signal in source components and a residual component is
a rather difficult task. A way to avoid this phenomenon,
would be to add, in a future work, a prior density on each
amplitude parameter.

5. CONCLUSION

We have proposed a single sensor audio source separa-
tion method, which is based on multiple-window STFT
representation and a recently introduced audio source se-
paration method. The proposed approach facilitates analy-
sis of sound events at different time scales and thus leads
to enhanced separation performance. A few observations
worth to be mentioned. First, we could replace the itera-
tive STFT scheme with a hierarchical multi-window ana-
lysis, as is done with local cosine packet. Second, we can
use prior densities on the amplitude parameters in order to
estimate the residual signal more easily. Finally, this algo-
rithm could be used to get a multiresolution segmentation
of a composite audio signal.
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