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ABSTRACT

We propose a new method to perform the separation of two
audio sources from a single sensor. This method generalizes
the Wiener filtering with Gaussian Mixture distributions and
with Hidden Markov Models. The method involves a trai-
ning phase of the models parameters, which is done with
the classical EM algorithm. We derive a new algorithm for
the re-estimation of the sources with these mixture models,
during the separation phase. The general approach is eva-
luated on the separation of real audio data and compared to
classical Wiener filtering.

1. INTRODUCTION

We use in this paper the Wiener filter theory for source

separation using one single sensor.
We observe a mixture z(t) = s1(t) + sa(t) which is the
superimposition of two sources and our aim is to estimate
the sources. In the Bayesian context, it is assumed in stan-
dard Wiener filtering that the prior densities of the sources
are gaussian (centered) densities. Some attempts have been
made, in the denoising context, to use other prior densities
for the original signal model : generalized gaussian densi-
ties [1] or gaussian mixture priors [2] and gaussian scale
mixture models [3], [4].

We study in this paper gaussian mixture priors (GMM)
as well as Hidden Markov Models with gaussian conditional
densities, in the context of source separation. This involves
two non gaussian models, one for each source, the parame-
ters of which are estimated in a training phase. We derive
a source estimation algorithm, which takes the form of an
adaptive weighted Wiener filtering, in the separation phase.

Tgis work is ona similar line as [5] but it generalises the
approach to GMM models and addresses the case of smooth
adaptive Wiener filtering

As we are interested in this paper in audio sources, or
more generally, locally stationary sources, we will not study
the signals directly, but rather their Short Term Fourier Trans-
form (STFT), denoted by S. The mixing equation becomes
Sz(t, f) = Ss1(t, f) + Ssa(t, f), in the time-frequency
domain, as the STFT is linear.
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If we assume that both sources have gaussian centered
priors, with respective diagonal covariance matrices ¥; =
diag(c?(f)) and £ = diag(c2(f)), then the optimal Baye-
sian estimators for both sources is the Wiener filtering [6] :

(f)

of

Ssi(t, f) = mgl‘(ta f)
— 0'2
Ssat, f) = W%Sm(t, f)

In this paper, we study the case of mixture of gaussian
priors, for the STFT of both sources
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Where @Q; is number of components in the model of the
source s; and pa(Ss(t, f), {o?(f)}) is the centered gaus-
sian density with covariance matrix diag(o*(f)) and o7, (f)
is the variance of the gaussian density corresponding to the
index k; of the source s; (i = 1,2), and to the frequency
component f.
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The diagonal covariance matrices diag(a;. (f)) can be
interpreted as power spectral densities (PSD) which corres-
pond to spectral shapes. These spectral shapes correspond
to the structure of audio signals which contain various types
of timbers and pitches. Our motivation for the use of Gaus-
sian Mixture Models (GMM) is to take into account the di-
verse structure of sounds through multiple PSD (covariance
matrices). Thus we may model non stationary, still locally
stationary, signals contrary to classical Wiener filters.

In fact, this prior structure is quite general and leads to
an adaptive Wiener filtering scheme.

It is assumed here that both Gaussian Mixture Models
(GMM) parameters are estimated in a first phase, in which



training samples of the sources are provided in order to es-
timate the covariance matrices and the prior weights.

In section 2, we propose an algorithm for the estimation
of the sources, in the separation phase, in the case of gaus-
sian mixture priors for the sources (GMM).

In section 3, we discuss the training phase, which relies on
the Expectation-Maximization (EM) algorithm.

In section 4, we generalize our prior models to Hidden Mar-
kov Models (HMM) with gaussian conditional densities.

In section 5, we study both GMM/HMM models on a mix-
ture of real audio signals.

2. SOURCE ESTIMATION

The aim here is to derive an estimation algorithm of the
sources, given the mixture, in the GMM setting. We will see
that this estimation can be expressed as weighted Wiener fil-
ters, where the weights are adaptive. We use in this paper a
classical incomplete data formalism for the Gaussian Mix-
ture Models (GMM).

If X (t, f) is the observed signal (or Sz(t, f)), for a gi-

ven ¢, we suppose that the complete datais Z = { X (¢, f), q(t)}

where ¢(t) is the index of the active component in the GMM
at time index ¢, that is the index of the gaussian density from
which the data X (¢, f) was generated.

If we know, in the additive mixture setting Sz (¢, f) =
Ssi(t, f) + Ssa(t, f), for a given time ¢, the active com-
ponent indexes k; and ko for both sources s; and sz, then
the conditional posterior mean estimator coincides with the
Wiener estimator :

BlSs(t, )k k)] = —— 20 so )
DIk k)] = S5y Salts
_an
BiStalt Pk ko) = o Satt,

We now introduce the posterior probability of the com-
ponents k1, ko of both models of the sources Ss1 (¢, f) and
Ssa(t, f) at time ¢, denoted by 7k, &, (t). Thus vk, &, (t) is
the probability of the hidden (active) components ¢; (¢) and
g=(t), at time ¢, are equal to &, k2 conditionally to the com-
plete observed sequence {Sz(t1, f),...,Sz(tn, f)}:

’Ykl,kQ(t) :pt(ql = k17q2 = k2|31'(t1,f),.. 7S$(tNaf))

We estimate the sources with the different Wiener filters
for each couple of components (k1, k2), weigthed with the
posterior probability v, ., (t)

= B oy, (f)

Ssi(t, f) = k%;z V1 ko (ﬂm Sx(t, f)
~ o2 (f) |

Ssa(t, f) = k§2 V1 ko (ﬂm Sz(t, f)
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This is a time varying Wiener-type filter. It is also an adap-
tive filter, as we will see that v, x, () depends of the obser-
vation Sz(t, f). Note that it can be shown that this estimator
is the posterior mean estimator in the Bayesian setting.
We use in the following the present notation : y ~ N(0, o2)
means y has a gaussian centered distribution of variance 2.
For a given frame index ¢ and a given component couple
(k1,k2) = (g1(t), g2(t)), the prior densities of both sources
are gaussian, centered:

Ssi(t, f) ~ N(0, diag(ay, (f)))
Ssa(t, f) ~ N(0, diag(a, (f)))

The observed process Sz(t, f) = Ssi1(t, f) + Ssa(t, f) is
centered gaussian distributed with covariance matrix diag(o7_ (f)+

i, ().
Sa(t, f) ~ N(0,diag(a%, (f)) + o, (£)))

As we have vk, k, (t) o p(Sz(t, )|k, k2) - p(k1) - p(k2),
we get in the GMM case:

Vir ko (t) X Wiy Wi, pa (S (2, £); {0k, (f) + 01, (F)}) (D)

In expression (1), we get an adaptive Wiener filtering
scheme, as the weighting probability +, ,(t) depends on
the observed mixture Sz (t, f), for a given ¢.

This yields the following estimation algorithm

Algorithm 1
For all frame indexes ¢
1: Compute for all couple of components
(k1,k2) the posterior probability g, k, () =
pt((k15k2)|8$(t17f)57S$(tN7f))
2: Filter
- ’ o (f |
Ssi(t, f) = ke () 5 Sa(t,
(4, ) k%w p ()cr,%l(f)w%;z(f) t, f)
o ' o, () |
Ssy(t, f) = ke (B) 2| Sz(t,
2( f) kgz’yk ,k()o_l?:l(f)+o_zz(f) ( f)

Note that the couple of components (k1, k2 ) of the source
model can also be seen as the component of the observed
process model. As Sxz(t, f) = Ssi(t, f) + Ssa(t, f), the
density of the observation is the convolution of both prior
models. In the GMM context, this density is still a mixture
of gaussian model with @ = Q1 x Q2 components:

p(Sz(t, f)) =
YL Y ok wipe (S, £ {oF, (f) + 03, (H)})



We will see now how the parameters {o} } and {ws,}
are estimated in a training phase, in which excerpts of each
source are provided.

3. TRAINING PHASE

In a first phase, we assume that we have at our dispo-
sal audio samples, which are representative of each source,
in order to estimate the model parameters, that is the cova-
riance matrix and the prior weight of each component.

In order to estimate these parameters we make use of the
classical Expectation-Maximization (EM) algorithm [7].

In the following, we will not estimate directly the co-
variance matrices (PSD) as the variances of the observed
process Ss;(t, f). We rather use the EM algorithm on the
log module spectra log |Ss;(t, f)| for a better accuracy in
the segmentation of the data, that is the estimation of the
posterior probability v, (t) of observing component k; of
the source at time ¢. Then we have

_ D @)ISsit, )P
Zt Vk: (t)

The parameters estimated with the EM algorithm are the
covariance matrices {0 (f)} and the weights {w, }, whe-
reas the number of gaussian densities ); is set a priori.

We have now a complete framework for audio source se-
paration using one single sensor. Let us see the changes that
occur if we use hidden Markov Models instead of GMM.

ok (f)

4. HIDDEN MARKOV MODELS

In the case of gaussian mixture models, the prior weights
of the gaussian densities are kept constant. Hidden Markov
Models (HMM) with mixture of gaussian conditional densi-
ties, of order L, can be seen as a generalization of GMM, in
which the prior weights at time ¢ depend on the active HMM
state, which corresponds to the component index ¢;(7), at
previous times T =t — 1,...,t — L. The weights parame-
ters are modeled in a matrix wy, ¢),q; (¢=1),...,q; (t—L)-

Therefore the HMM density for the source s; is:

Qs
PiSsi(t, 1)) = D [Whigu(t=1),.mas(t=L)"
k;=1

pa(Ssi(t, £)i {or,(H)})]

As we must compute the couple of components (&1, k2)
posterior probability -y, k, (t), for each frame index ¢, it
seems natural to use the forward backward algorithm [8]
in the HMM models. This is the only difference between
GMM and HMM modeling: once we have computed the
probabilities v, ., (t), we are able to compute the weighted
Wiener-type filter.
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The HMM models permit to take into account the a
priori time dependencies between the modeled PSDs, through
the state dependency structure.

We will compare in a real audio experiment the perfor-
mance of GMM and HMM models. Note that we will consi-
der only first order HMM model.

5. POST-PROCESSING

We propose now a post-processing step in order to im-
prove the separation performances. At the end of the sepa-
ration step, we have at our disposal two signals §; and 3§,
which are supposed to be more separated than in the ori-
ginal mixture. Thus in a classical source separation point
of view, we are now in a determined setting : we have two
input signals for a post-processing source separation step.

To keep things simple, we have only used a decorre-
lation algorithm on the estimated sources, though we could
have used standard Independent Component Analysis (ICA)
techniques.

If we note § = [§18,], C = 7 - §73 is the 2 x 2 cova-
riance matrix of the estimated sources. Then we set :

s*=35.071/2

s* represents the estimated sources after decorrelation, i.e.
s*Ts* is diagonal.

Let us define now cirteria for the evaluation of the expe-
riments on real audio sources.

6. EVALUATION CRITERIA

In the evaluation of the separation experiments, we need
to define some criteria, in order to compare the performance
of GMM and HMM models in various settings (different
number of components for the model of each source). We
will suppose that the two original sources s; and so are un-
correlated and we denote their estimates §; and $».

Let us consider the orthogonal projection of the esti-
mated sources over the vector space spanned by the real
sources.

We may write §;
B2s2 + na.

We define a Source to Interference Ratio (SIR) as the ratio
in dB between the source component a1 (in the case of
the first source §;) and the interference component as ss.

We also define a Source to Artefact Ratio (SAR) as the
ratio between the sources components a; s; + a2 s2 and the
noise component n;. Note that these two components are
orthogonal.

o181 + Qg8 + nq and §2 = Blsl +

ay | [|sl

szl

[[31=m4]|
[Inall

SIR; = 20log,,

SAR; = 20log;,

(6%}
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I}
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The SIR is a way to measure the residual of the other
source in the estimation of each source, whereas the SAR is
an estimate of the amount of distortion in each estimated si-
gnal. One may find more details about these measurements
in [9].

SAR; = 201og;, 152 =na]|

[E]

SIRz = 20log;,

7. EXPERIMENTAL ISSUES

We now discuss issues concerning the use of the log mo-
dule spectra of the observed signal in the estimation of the
weighting function -y, &, (t), in the separation phase. In sec-
tion 3, for the training phase, we compute the posterior pro-
babilities -y, (t) on the log module spectra log |Ss;(t, f)|
rather than on the signal, for accuracy reasons.

As a result, we should do the same thing in the separa-
tion phase for computing the weighting probabilities v, k., (£)

on the log module spectra of the observed process log |Sz(t, f)|.

Therefore, we have studied experimentally the case of a
complex random variable y with a centered gaussian distri-
butiony ~ N(0, ), in order to derive a gaussian model for
the logarithm of the module of the variable y.

We denote m (o) = E(log |y||o) for the mean of the log
module of a gaussian random variable. We have observed
that

m(o) = ao +log(o) 2

where ag ~ —0.634 with Monte-Carlo estimation.

Let us denote now my, (f) and B, (f) the means and the
variance of the component k; of the GMM/HMM model of
the source s;, which are estimated in the training phase. The
mean my, ,(f) of the component (k;,k2) in the GMM
model of the resulting mixture signal is according to for-
mula 2:

Mk ko (f) = % log [exp[2mk1 (f)] + exp[2mk2 (f)]] (3)
ﬂkl,kZ (f) = ﬂk1 (f) + ﬂkz (f)

where B, k. (f) is the variance of the component (&1, k2)
in the GMM/HMM model of the composite signal. The de-
finition 3 is consistent with the approximate formula used
in [5] S My ko (f) = max [mk1 (f)a Mg, (f)]

We use the following mixture model in the forward-
backward recursion for the computation of the probabilities

V1, ko (t) .

p(S.Z'(t, f)|k17 kZ) ~

8. EXPERIMENTAL STUDY

In the experimental setting, we take audio recordings
from a jazz standart. The first source consists in the piano
and bass part, whereas the second source consists of the
drum part.

We use one minute of both excerpts as training data, that
is for the estimation of the models parameters. The next 15
seconds of both sources are added to form a “hand-made’
source mixture. We estimate the sources in the separation
phase from this audio mixture.

The excerpts are sampled at sampling rate of 11kHz. As
an input of the STFT, We use a windowed signal frame of
length 47 ms.

Note that the sources are approximately decorrelated, i.e
Hstsall ~ 0.006.

lls1llls=1l

8.1. Evaluation

We evaluate the source to interference ratio (SIR) and
the source to artecfact ratio (SAR) with varying numbers of
components )1, Q- in the mixture models. We evaluate the
GMM models and HMM models of order 1.

The scores with/without post-processing are given in
table 1 for the SIR and table 2 for the SAR. Note that we
have also given the SIR and SAR for the standard Wiener
filtering, these tables, as this technique can be seen as a par-
ticular case of the proposed method with one unique mix-
ture component per model.

state | source [ GMM | HMM | GMM | HMM
no post-processing | post-processing
Wiener | piano 8.7 - 14.0 -
Wiener | drums 6.7 - 12.8 -
4 piano | 10.5 10.5 36.4 35.7
4 drums 9.7 9.7 10.4 10.4

8 piano | 11.0 10.8 31.5 29.3
8 drums | 11.3 11.3 121 121

16 piano 11.8 11.6 25.1 23.0

16 drums | 11.9 11.8 125 124

TAB. 1 —. SIR for each of the sources as a function of the
number of components in each source model.

8.2. Discussion

As we compare the SIR and SAR (Signal to Interference
Ratio and Signal to Artefact Ratio) with the GMM or HMM
methods and with the standard Wiener filtering, we see that
we obtain better results with the mixture models, according
to the defined criteria.

We remark that, in the experiments, the SAR values are

Q Q
2= 2okt Whi Wk PG (108 [S2 (8, £, Mk ks (F)s B e (Fhmaller than the SIR values in general. This is perhaps due
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no post-processing | post-processing

state | source | GMM | HMM | GMM | HMM
Wiener | piano 7.8 - 4.7 -
Wiener | drums 5.8 - 2.6 -
4 piano 8.4 8.4 4.2 42

4 drums 5.9 5.8 5.5 5.5

8 piano 8.9 8.9 5.1 5.1

8 drums 5.9 5.8 5.7 5.5
16 piano 8.1 7.9 5.1 5.0
16 drums 5.4 5.1 5.2 49

TAB. 2 —. SAR for each of the sources as a function of the
number of components in each source model.

to the stochastic aspect of the model, in which it is assumed
that the phases of the STFT of the sources are random. As a
consequence, the phase are not estimated and both estima-
ted sources phases are equal to the mixture phase, at each
frequency.

The post-processing step improves clearly the SIR, whe-
ras it degrades slightly the SAR, in general.

We may also remark that the HMM models do not si-
gnificantly improve the separation results over the GMM
models, according to the SIR/SAR criteria.

9. CONCLUSION

We have presented and evaluated a statistical method for
the separation of two audio sources using one single sensor.
This method relies on a smooth adaptive Wiener filtering
scheme and we make use of gaussian mixture models for
the sources priors. The parameters of the a priori models
are estimated in first phase and we have discussed the is-
sues of this phase. Finally, the reported experiments show
a significant improvement over the standard Wiener filter.
Next step will be to work on a phase model for the sources
and to introduce a psycho-acoustic model in the separation
phase and in the evaluation criteria.

10. REFERENCES

[1] Aapo Hyvérinen, Patrik Hoyer, and Erkki Oja, “Image
denoising by sparse code shrinkage,” .

[2] A. Bijaoui, “Wavelets, gaussian mixtures and wiener
filtering,” Sgnal Processing, vol. 82, pp. 709-712,
2002.

[3] L. Benaroya, R. Gribonval, and F. Bimbot, “Non nega-
tive sparse representation for wiener based source sepa-
ration with a single sensor,” in ICASSP, 2003 (submit-
ted).

[4] J. Portilla, V. Strela, M.J. WainWright, and E. Simon-
celli, “Adaptive wiener denoising using a gaussian scale

961

of mixture model in the wavelet domain,” in Proc. of the
8th international onference on Image Processing, Thes-
saloniki,Greece, October 2001.

Sam T. Roweis, “One microphone source separation,”
in NIPS, 2000, pp. 793-799.

N. Wiener, Extrapolation, interpolation and smoothing
of stationary time series, MIT press, 1949.

[7]1 A.P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-
mum likelihood from incomplete data via the em algo-
rithm,” Journal of the Royal Satistical Society, 1977.
L.R. Rabiner, “A tutorial on hidden markov models and
selected applications in speech recognition,” in Procee-
dings of the IEEE, 1989, vol. 77, pp. 257-285.

R. Gribonval, L. Benaroya, E. Vincent, and C. Févotte,
“Proposals for performance measurement in source se-
paration,” in ICA (submitted), 2003.

(5]
(6]

(8]

(9]



	Page957: 957
	Header: 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), April 2003, Nara, Japan
	Page958: 958
	Page959: 959
	Page960: 960
	Page961: 961


